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It is hypothesised here that there exist two classes of emotions; drivingand satisfying emotions.
Driving emotions significantly increase the internal activity of the brain andresult in the agent
seeking to minimise its emotional state by performing actions that it would not otherwise do.
Satisfying emotions decrease internal activity and encourage the agentto continue its current
behaviour to maintain its emotional state. It is theorised that neuromodulators act as simple yet
high impact signals to either agitate or calm specific neural networks. This results in what we
can define as either driving or satisfying emotions. The plausibility of this hypothesis is tested
in this paper using feed-forward networks of leaky integrate-and-fireneurons.

Introduction

Driving and satisfying emotions

Emotions in a natural agent are either pleasant or unpleas-
ant, but never neutral, (Nesse, 1990). We can understand
emotions as being either positive or negative, (Zhang & Lee,
2009). This may be useful when describing emotions from
a personal perspective, but this description carries connota-
tions and an implicit judgement on their utility. We need to
differentiate between the experience of an emotion and its
effect. For example, it may be argued that anger is a negative
emotion because it is unpleasant to experience. An equally
valid argument is that anger has positive motivational bene-
fits. Nesse gives an example of the rationality of anger. In
a long term, committed social partnership where one party
is tempted to defect, the threat of an irrational and spiteful
retaliation because of the betrayed partner’s anger decreases
the likelihood of a defection continuing or even taking place
at all.

We could also think of emotions as being either attractive
or repulsive. This may be useful when describing emotions
within the context of a dynamical system but it is less appli-
cable when describing animal or human behaviour. For ex-
ample sadness and fear are repulsive emotions that we nor-
mally seek to minimise but people deliberately invoke sad-
ness by watching soap operas and other melodramas. They
deliberately invoke fear when reading or watching thrillers
or by participating in fun-fair rides or extreme sports. In the
latter case, people engage in these activities because theyare
also exciting and fun. Emotions can be simultaneously at-
tractive and repulsive.

Rolls describes emotions in terms of rewards and punish-
ments. An animal will work for a reward, but will work
to escape or avoid a punishment (Rolls, 2005, page 118).
Emotions are proposed as being states elicited by rewards
and punishers and changes in reward and punishment (Rolls,
1999, page 60). Contentment can be considered a rewarding
emotional state for example, but how is this different from

the emotion of joy? Rolls uses the concept of positive and
negative reinforcers and punishers as determined by whether
the reinforcer or punisher increases the probability of a re-
sponse by the agent.

These terms may be useful when describing observations
of animal behaviour but they are less descriptive when re-
ferring to emotional experiences or an appreciation of why
rewards and punishers have the effect that they do. Animals
experiencereward and punishment. From the perspective of
the animal, reward and punishment is more than mere habit-
uation and conditioning.

It can be seen that the utility and limitations of the de-
scriptions that we use partially depend upon the context in
which they are employed. Can we decide on terms that are
unambiguous regardless of whether we are referring to the
experience of emotions or observations of animal behaviour?
It is proposed here that emotions can be thought of as being
eitherdriving or satisfying. These terms describe both the
experience and behavioural effect of being in an emotional
state and are also neutral as to its utility. This is more than
a mere linguistic exercise, there is a theoretical basis behind
these terms.

(Rolls, 2005, page 128), discusses howtaxesorient an
organism towards or away from stimuli in its environment.
Phototaxis bends a plant towards a light source for exam-
ple. An organism may move towards sources of nutrients or
away from materials with physical properties detrimental to
its health.

Animals need to maintain homoeostasis. Various bodily
processes need to be kept relatively constant. Critical re-
sources must be kept replete regardless of the environment
that the agent may inhabit. Examples of these resources in-
clude levels of food, water and oxygen. Internal physiolog-
ical variables must also be kept within a certain range. For
example, natural agents will seek warmth when it is too cold
and try to cool down when it is too hot.

Panksepp describes how sensations generate pleasure or
displeasure depending on the homoeostatic equilibrium of
the body (Panksepp, 1998, page 164). For example, food



2 KARLA PARUSSEL

tastes better when we are hungry. Panksepp also discusses
the idea of emotional attractors in the brain as reflected by
repetitive patterns of electrical activities that are triggered by
specific environmental stimuli (pp94).

When discussing homoeostasis we can think of driving
emotions occurring when the organism needs to reassert the
internal equilibrium of its physiological processes. Satisfy-
ing emotions would ensue when equilibrium is reasserted or
maintained. Although successful adaptation to an environ-
ment is more than a matter of maintaining homoeostasis, the
concepts apply equally well to neutral actions and behaviours
that have no intrinsic value to the maintenance of the body.
For example, animals may be driven to seek out others to
breed and socially bond with, and can be satisfied and settle
down when they do.

So far we have only judged emotions as being driving
or satisfying. If these terms are to be non-ambiguous then
we need to be able to determine their classification through
quantifiable measurements rather than via interpretation.

The hypothesis

The brain can be understood as a self-organising system,
(Kelso, 1995); (Malsburg, 2003). The way that a normal
brain functions internally is not directly determined by an
external controller. Instead the brain reacts to signals from
the agent’s senses.

If the brain self-organises then there must be attractors or
relatively stable states that it can settle into. When other
physical systems self-organise they normally do so as their
own internal energy dissipates or is minimised. Patterns can
emerge instantaneously in a chaotic system but also disap-
pear again just as quickly. Patterns persist in a self-organising
system because there is insufficient energy or activity to
break them apart. We can see this happen with crystallisation
when a liquid becomes supersaturated as it cools. If the liq-
uid is re-heated then the activity of the molecules is increased
and the patterns start to break up.

It was discussed above how Panksepp refers to emotional
attractors in the brain as seen by repetitive patterns of elec-
trical activities. The assumption made in this paper is that
the brain self-organises by settling into stable states, orat-
tractors, as characterised by a reduction in internal activity.
This assumption is consistent with how models of artificial
neural networks developed by the author are understood to
self-organise.

Feed-forward networks of leaky integrate-and-fire neu-
rons can be made to self-organise by minimising the strength
of their input activity. This consequently also reduces thein-
ternal activity of the network, (Parussel, 2006). The networks
act as minimal disturbance systems. Incoming activation is
directed to neurons in the output layer and the action that
corresponds to the winning neuron is performed accordingly.
If the action has desirable consequences then the appropriate
input signals fed to the network are temporarily reduced in
strength. Actions that reduce the strength of the input signal
have a greater chance of being performed again in the future.
If an action does not subsequently decrease the strength of

the input signal then other actions have an equal chance of
being performed.

It was shown that the networks can be biased towards
exploration using inhibitory neuromodulators in the middle
layer. This agitates the network out of any relatively sta-
ble state to increase the chance of it exploring other actions,
(Parussel, 2006). The networks can also be biased towards
exploitation using excitatory neuromodulators at the output
layer, (Parussel & Cãnamero, 2007).

Emotions can be modulated by altering the levels of neu-
romodulators in a brain (Kelley, 2005). (Fellous, 2004) ar-
gues that emotions provide a multi-level communication of
simplified but high impact information. He also argues that
emotion can be seen as continuous patterns of neuromodula-
tion of certain brain structures (Fellous, 1999).

The hypothesis made here is that neuromodulators are
used to either aid or hamper the brain in minimising its in-
ternal activity. It is theorised that neuromodulators are used
for this purpose to act as simple yet high impact signals to
either agitate or calm specific neural networks. This results
in what we can define as either driving or satisfying emo-
tions. Driving emotions significantly increase the internal
activity of the brain and result in the agent seeking to min-
imise its emotional state by performing actions that it would
not otherwise do. Satisfying emotions significantly decrease
the internal activity of the brain and increase the probability
of the agent in continuing its current behaviour to maintain
its emotional state.

(Noble, 1997) argues that Artificial Life simulations can-
not prove theories concerning the real world. The role of
such models is to establish the plausibility of a theory. The
theory can then be referred back to the relevant empirical
science in order to be proven in the natural world. The plau-
sibility of the above hypothesis given the stated assumptions
and observations is tested in this paper.

Method

The system

A self-organising biologically inspired neural network has
been developed so as to explore the functionality provided
by neuromodulation. The intention is to increase our under-
standing of emotions by researching the functionality of the
mechanisms underlying them.

The artificial life animat concept has been abstracted to
provide the simplest possible context for testing the effect
of neuromodulation when applied to an artificial neural net-
work. A stimulus-response agent has been created that can
neither sense an environment nor be affected by one. The
only thing that it interacts with is a body with two resources,
labelled ”Energy” and ”Water” (see figure 1).

Each change in resource level is passed to the agent con-
troller as an input signal. Before being input, they are scaled
to the largest increase and decrease that has occurred to each
resource so as to be within the range [0,1]. They are then
inverted so that desirable changes, such as increases to a re-
source level, result in a reduced signal to the agent controller.
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Actions

Body

Agent
controller

Figure 1. The agent controller receives input signals derived from
the state of the body. It then attempts to choose one action to be per-
formed. The action directly alters the body state of the agent. This
leads to different input signals being passed to the agent controller
in the next turn.

The agent can execute a set of actions that either increase
or decrease by a given amount the energy or water level in
the body, plus two neutral actions. Neutral actions are use-
ful because if they are used differently to each other then it
throws doubt on how well the agent is adapting. The ’Inac-
tive’ action is used by default when an agent fails to choose
for itself. This can happen if no activation reaches the output
neurons of its neural network. It results in each resource of
the agent being reduced by the maximum cost. The effect of
this is more costly to the agent than if it deliberately chose
the most costly action available to it as that would only result
in a reduction of one resource.

The neural network

The agent adapts using a feed forward neural network of
spiking leaky integrate-and-fire neurons based on the model
described in (Koch, 1999, page 339); (Wehmeier, Dong,
Koch, & Essen, 1989).

The network learns which outputs should be most fre-
quently and strongly fired to minimise the subsequent level
of input signal in the next turn. Each neural network is made
up of three distinct layers; input, middle and output.

For each resource, the input layer has two neurons that
output to the middle layer. One neuron signals the need
for the resource and the other neuron signals the satisfaction
of that need. There are situations in which an effective be-
haviour for an agent may be to decrease a need but not satisfy
it. Alternatively there may be situations in which an agent
needs to store more resources than it is used to doing. In
these experiments the agent is tasked only with maximising
its resources.

There is one output neuron per action. The network is it-
erated over a fixed number of times within a single turn. The
action corresponding to the output neuron with the greatest
average activation is then performed. The action performed
by the agent directly and immediately alters the level of a re-
source. This consequently determines the strength of the cor-
responding input signal fed to the network in the next turn.
This is fed via the input neurons corresponding to the re-
source affected by the action. This allows the network to act

as a minimal disturbance system (Wörgötter & Porr, 2004)
as it settles upon actions that reduce its total input activation.

The Neuron

Spiking neurons were used in the neural network, each
one acting as a capacitor to integrate and contain the charge
delivered by synaptic input. This charge slowly leaks away
over time. The neurons have a fixed voltage threshold and
base leakage which are genetically determined.

The neurons also have an adaptive leakage to account
for how frequently they have recently spiked. If a neuron
spikes then its leakage is increased by a genetically deter-
mined amount. If the neuron does not spike then the leak-
age is decreased by that same amount1. Resistance is con-
strained within the range [0, 1]. This model was inspired by
the adapting integrate-and-fire models described in (Koch,
1999) section 14.2.3 pp339.

The spiking threshold is the same for all neurons in the
network and is constant. The neurons are stochastic so that
once the spiking threshold has been reached, there is a ran-
dom chance that a spike will be transmitted along the output
weights. Either way the cell loses its activation2.

The neurons send out a stereotypical spike. This is imple-
mented as having a binary output. The weights connecting
the neurons are constrained within the range [0, 1].

Local learning rule.
The learning rule employed uses spike timing-dependent

plasticity (Bi & Wang, 2002). It is implemented as a
two-coincidence-detector model (Karmarkar & Buonomano,
2002); (Karmarkar, Najariana, & Buonomano, 2002) based
on (Song, Miller, & Abbott, 2000) and later evolved for use
in robots by (Di Paolo, 2003). Each neuron has its own
post-synaptic recording function that is incremented when
the neuron spikes and which decays over time in-between
spikes. This is compared to the pre-synaptic recording func-
tion of the neuron that has transmitted the activation. Each
layer of neurons has its own increment and decay rates deter-
mined prior to testing via automated parameter optimisation.

Synaptic connectivity between layers.
The multitude of connectivity between two layers is speci-

fied using a continuous value whereby the fractional part de-
termines the chance of a connection between two neurons
being made. So for example, a multitude of 1.5 would mean
that every neuron in a source layer was connected to every
neuron in the target layer at least once, but with a 50% chance
of being made a second time. Parameter optimisation most
often selected multitudes of less than 1.

1 It was not known whether separate increment and decrement
parameters were required. To keep the number of attributes to a
minimum it was decided that two parameters would be used only
if it was found to be required. The network evolved well with only
one parameter.

2 This model of stochastic firing is a simplified one. In real neu-
rons there is both both a possibility that a spike is passed down the
axon to the target cells and a possibility of vesicle release once a
spike has reached a synapse.
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All connections between layers are excitatory and modifi-
able. Non-modifiable connections were avoided to help min-
imise the risk that evolution would hard-code the network
topology to increase the average fitness during parameter op-
timisation.

Modulation.
A modulator is a global signal that can influence the be-

haviour of a neuron if that neuron has receptors for it. The
signal decays over time, as specified by the re-uptake rate,
and can be increased by firing neurons that have secretors for
it.

Neurons that are to be modulated are given a random num-
ber of receptors. These can be modulated by neurons in other
layers that have secretors for those modulators. The receptors
modulate either the neuron’s sensitivity to input or probabil-
ity of firing. The effect of this modulation is determined by
the level of the associated modulator and whether the recep-
tor is inhibitory or excitatory.

Neurons can also have secretors. These increase the level
of an associated modulator. The modulator re-uptake rate,
the modulation rate of the receptors and the increment rate
of the secretors is determined by artificial evolution along
with many other parameters of the neural network before the
model is tested.

Parameter Optimisation.
The parameters of the networks are optimised using arti-

ficial evolution so as to make a fair comparison. Once these
constrained evolutionary runs are finished the parameters are
hard-coded and tested as a population of 450 agents in order
to determine the average performance of the neural network.
An average fitness is required because the mapping from
genotype to phenotype is stochastic. This is due to the ran-
domisation of weights and the connectivity between neurons.
The fitness function used during parameter optimisation was
Energy+Water+Age−absolute(Energy−Water).

The absolute difference between the energy and water re-
source is subtracted from the fitness as both resources are
essential for the agent to stay alive. Age is important for the
fitness function during parameter optimisation when agents
are more likely to die before the end of their evaluation.

Minimal disturbance networks

The network learns which outputs should be most fre-
quently and strongly fired to minimise the subsequent level
of input signal in the next turn.

It is easier to understand how the neural network func-
tions if it is seen as a dynamical system(D.Beer, 1995). Un-
derstanding an agent as a self-organising dynamical system
removes the question of when to switch behaviours as the
transition happens continuously over time. It also means that
it is more appropriate to think of attractive and aversive exter-
nal stimuli than positive or negative reinforcement. The sys-
tem can therefore be self-organising and more autonomous.
Self-organisation removes the question of when to teach the
network and when to recall information encoded in it.

(Wörgötter & Porr, 2004) provide an overview of the field
of temporal sequence learning. They discuss how the learn-
ing paradigm of disturbance minimisation, as opposed to re-
ward maximisation, removes the problem of credit structur-
ing and assignment. The two paradigms are not equivalent.
Whereas maximal return is associated with a few points on a
decision surface, minimal disturbance uses all of the points.
In a minimal disturbance system, every input into the system
drives the learning process. If there is no signal then the sys-
tem is seen as being in a stable state. Rewards and maximal
return are not sought, as is the case with credit assignment
learning. Instead, any disturbance-free state is satisfactory.

Minimising free-energy

The dynamics of a self-organising system can be under-
stood using the concept of an energy landscape, (Heylighen,
2000); (Kauffman, 1993, page 176).

Using an analogy of a ball rolling along a peak, ridge or
plateau, then given sufficient energy it will roll down a slope
and minimise its own potential energy. The ball will not be
able to later return unless its kinetic energy is first increased.
This process will continue until the ball comes to a stop at
the bottom of the landscape, or within a local depression that
requires more kinetic energy than the ball currently has for
it to escape. Valleys correspond to attractors in a dynami-
cal system, the speed that the system moves into them being
determined by the steepness of the slope.

This is not a new concept in neural network theory, an en-
ergy function was first used with Hopfield networks (Hertz,
Krogh, & Palmer, 1991, page 21). This allows an ’energy
landscape’ to be imagined whereby patterns memorised, be-
ing attractors in the system, can be seen as local minima in
the landscape. As with the analogy of the ball, assuming
the influence of gravity, a particle placed anywhere on this
imaginary surface will roll down to the nearest basin.

Adaptive performance of the networks

The synaptic weights between the input and the middle
layer of the network can be thought of as providing ’activ-
ity diffraction’ to allow the input signals to filter throughthe
system at different speeds. The synaptic weights between the
middle layer and the output layer can be thought of as pro-
viding ’activity integration’, integrating those signalsback
into combinations that allow particular output neurons to fire
more frequently than others.

The network is feed-forward rather than recursive. The
output neurons do not connect back to the input layers but
they can affect them indirectly. The action that corresponds
to the output neuron that has the highest average activation
over all the iterations within a turn is performed by the agent.
If this increases or decreases a resource in the body then this
change is reflected in the subsequent input signals fed to the
neural network.

Because activity filters through the network at different
speeds, some output neurons will fire earlier than others. If
an action is rewarding and subsequently results in a reduc-
tion of input signal to the network, synaptic activity will be
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reduced for the other neurons and therefore will be less likely
to fire. If an action is not rewarding, the input signal is not
reduced, other neurons will eventually fire and other actions
will be tried instead.

Biasing a network for either exploration or ex-
ploitation

Neuromodulators can be used to bias a neural network to
function in a certain way depending on how they are used.
The networks used here can be biased towards either explo-
ration or exploitation by using inhibitory or excitatory recep-
tors respectively, (Parussel, 2006); (Parussel & Cañamero,
2007).

The network can be biased towards exploration if the
hunger and thirst input units secrete corresponding modu-
lators, for which the middle layer units have a random set
of inhibitory receptors (see figure 2a). Alternatively, thenet-
work can be biased towards exploitative behaviour if the mid-
dle layer secretes a single modulator for which the output
layer has excitatory receptors (see figure 2b). A variant of
the exploitation network that can be externally influenced us-
ing modulators can be seen in figure 2c. This network was
optimised for use without modulators but was tested with in-
hibitory receptors applied to its input layers.

Body
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Figure 2. The agent has a body that contains water and energy
levels. There are four input neurons; two per resource, one to signal
satisfaction of the resource and the other to signal the need for it.
Only four neurons are shown in the above diagram for the middle
and output layers. In practise the exploratory network had four-
teen neurons in the middle layer and the exploitation network had
nineteen. Each network has ten neurons in the output layer, one
for each action. A) Two-modulator agent biased for exploration:
Hunger (and thirst) neurons increase the strength of the hunger (or
thirst) modulator when they fire. Neurons in the middle layer have
a random number of inhibitory receptors for these modulators. B)
Single-modulator agent biased for exploitation: Neurons in the mid-
dle layer increase the strength of a single modulator when they fire.
Neurons in the output layer have a random number of excitatory re-
ceptors for this modulator. C) Network with inhibitory receptors at
the input layer that can be biased towards otherwise neutral actions
by a system external to the network.

Exploitation.

Figure 3. The structure of a typical modulating network. Clock-
wise from top left; (top left) hunger signal layer, (top right) thirst
signal layer, (middle) middle layer, (bottom) output layer. One neu-
ron in each input layer signals the decrease in the corresponding
resource, the other signals the resource being repleted. The output
layer consists of one neuron per action available to the agent.

Figure 4. An exploration network in action. Neuron size shows
level of activation, width of weights show synaptic strength. For
example in the above image, the middle to output layer connections
have low strength and the output neurons have low activation. A
neuron in the thirst layer (top right) has a high activation and will
probably soon fire. Each upper cube corresponds to a modulator, the
height of which is animated to show the changing global strength of
that modulator. The non-animated numbered cube underneath is
used to identify the modulator; (left box) hunger modulator, (right
box) thirst modulator.

With a non-modulating or exploratory network, the more
rewarding an action, the stronger the activation of the cor-
responding output neuron. In contrast, a network biased for
exploitation provides reduced activations for all of its output
neurons by default and uses modulation to excite the output
neurons which are rewarding.

The excitatory receptors at the output layer increase the
activity of the network. If the network performs an action
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that reduces the overall input level, then the winning neurons
in the output layer will benefit more from excitatory modu-
lation than the less activated neurons that are losing.

If the network performs a sub-optimal action then the in-
put signal is reduced less than if an optimal action was cho-
sen. This means that other middle layer neurons are more
likely to fire. Each middle layer neuron will also increase the
level of the modulator and each is more likely to fire different
output neurons. Consequently, the modulator cannot be used
to excite any particular output neuron more than all the others
when a sub-optimal action is performed.

Exploration.
It was discussed in section how activity filters through

the network at different speeds with some output neurons fir-
ing earlier than others. If an action is rewarding and subse-
quently reduces the input signal to the network, activationof
the other neurons will be reduced and they will be less likely
to fire. If an action is not rewarding, the input signal is not
reduced, other neurons will eventually fire and other actions
will be tried instead.

The hunger and thirst modulators of the exploration agent
optimised for use with discrete actions inhibit the neurons
in the middle layer. The strongest firing neurons have more
activation to lose when being inhibited. These are also the
neurons more likely to be firing the output neurons that lead
to actions that reduce total input activity into the network. So
by inhibiting the neurons in the middle layer the ’diffraction’
of activation throughout the network is reduced and other
actions have a greater chance of being performed. This in-
creases exploratory behaviour.

Relevance of exploration and exploitation to emotions.
Emotions can help the reasoning process (Damasio,

1994). Evans puts this idea in a game-theoretical framework
in his search hypothesis (Evans, 2002). A rational agent con-
fronted with an open-ended and partially unknown environ-
ment, emotions constrain the range of outcomes to be con-
sidered and subjectively applies a utility to each. The search
hypothesis can be seen as an example of an agent moving
from exploration of possible outcomes to an exploitation of
the action providing the current expected highest expected
utility.

However, the best course of action does not need to be
learnt through experience. (Nesse, 1990) defines emotions as
specialised states of operation that give an evolutionary ad-
vantage to an agent in particular situations. (LeDoux, 1998)
describes a distinguishing characteristic of cognitive process-
ing as flexibility of response to the environment. Emotions
provide a counter-balance to this by narrowing the response
of an agent in ways that have a greater evolutionary fitness.

As an example, predator avoidance driven by fear is an
ideal behaviour to be selected for and optimised by evolution.
It is a behaviour that needs to be maintained until the prey
reaches assured safety regardless of whether it is able to con-
tinually sense the predator or not (Avila-Garcı́a & Cãnamero,
2005). Nor will the prey benefit from being distracted by less
important sensory input while it is still in danger. Successful

fleeing behaviour might not require exploration of different
actions when instead exploitation of known strategies for a
successful escape should be given priority. On the contrary,
positive emotional states are thought to promote openness to
the world and exploration of new courses of actions (Blan-
chard & Cãnamero, 2006).

Results

Changing the level of overall activity

In dealing with the networks described here, it has been
observed that it is not as important whether receptors have
an excitatory or inhibitory effect on a neuron so much as
whether release of modulator increases or decreases activity
for the entire network.

The exploitation network has the middle layer excite the
output layer when modulating the sensitivity to input of the
neurons. Yet when modulation is decreased network activity
is increased. Conversely, the exploratory network has the
input layer inhibit the middle layer via modulation, yet this
decreases overall activity (see figure 5). This graph shows the
average activation for all the neurons for both networks and
how it either increases or decreases as the modulation rate is
increased. The change in the activation of the exploitation
network can be seen more clearly in figure 6.

Biasing the network towards exploration requires that ac-
tivity is increased so that other outputs have a greater chance
of winning. Biasing it towards exploitation requires that the
network is led to a more stable state by reducing its overall
activity. The network controller can also be influenced to
choose specific actions that would probably otherwise not be
selected by an external system decreasing its overall activity.

Using the analogy of the energy landscape again, it is use-
ful to think of a ball rolling around a local minima. Shak-
ing the landscape via an earthquake may bounce the ball out
of it and elsewhere. The stronger the earthquake the more
chance there is of this happening. Stopping the earthquake
all-together allows the ball to come to a rest. The network is
the ball, constantly trying to come to a rest. The modulators
are like a gain control for the earthquake.

Decreasing overall activity.
Figure 6 shows the effect of increasing the modulation rate

for the exploitation agent. The effect is not as dramatic as for
the exploration agent as only the output layer is modulated.
The output layer does not connect to any other layer and so
the effect of the modulation is localised. Whereas with the
exploration agent, the middle layer is modulated and this also
has an effect on the output layer.

It may seem strange that the activity of the entire network
can be reduced by exciting the output neurons, whether by
increasing their probability of firing or by increasing their
sensitivity to input. The neurons in the output layer do not
connect to any other neurons and so the increase in activity
does not affect any other neurons. But because excitatory
modulation makes the output neurons more likely to fire, then
the neurons are more likely to enter into a refractory state for
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Figure 5. The average activation of each neuron in the exploration
and exploitation networks as the modulation is increased. The fig-
ures are derived from a population of 450 agents running a network
consisting of the same number of neurons for 1,000 turns, with each
turn consisting of 10 iterations of the network. The exploitation
network referred to here has receptors that excite the neuron’s sen-
sitivity to input.
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Figure 6. Close inspection shows a downward trend to the av-
erage activation of the exploitation network as modulation is in-
creased. Least-squares fitting using a Lorentzian function has been
performed using Gnuplot’s fit command.

a period of time. During this period, any incoming activation
is immediately leaked away.

The exploitation network uses excitatory receptors at the
output layer in order to reduce network activity and to bias
it towards performing particular actions. A non-modulating
network was also adapted to reduce network activity, but with
inhibitory receptors at the input layer instead. The modula-
tor for these receptors was released externally to the network
when specific actions were performed. This was used to bias
the network to perform two otherwise neutral actions (see
figure 7).

Increasing overall activity.
Biasing a network towards exploration can also be used to

stop activity dieing all-together. With a network evolved to
work without modulators, a decrease in input activity eventu-
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were tested for each run for 1,000 turns.

ally leads to a decrease in output activity. If an action results
in the lowest possible strength of input signal and spiking-
activity in the network has already declined to the minimum
threshold required for hebbian learning to occur, then the net-
work settles into a stable state. This can occur in the absence
of any changes external to the system, such as the effect of
an action changing or noise being added to the input signals.

If no activity reaches the neurons in the output neuron then
the agent cannot choose an action for itself. In this situa-
tion the default ’Inactive’ action is chosen for the neural net-
work controller by the encompassing system. This function
is more costly than if the agent chose an action itself.

When testing a population of non-modulating agents for
longer than 1,000 turns, spiking-activity in the network
would cease over time, (Parussel & Smith, 2005). This led
to the weights freezing because the STDP learning rule only
updated the weights when spikes occurred. The activation of
the output neurons would slowly decay over time with the
winning action remaining the same in the absence of any
change in the effect of that action (see figure 8). The lim-
ited use of artificial evolution for parameter optimisationhad
settled upon a brittle strategy which depended on how long
each agent was evaluated for.

A population of modulating exploration agents were then
tested for the same extended period of time. They were
shown to continue transitioning between the same two win-
ning output neurons that caused a maximum increase in en-
ergy and water, with other neurons very occasionally being
chosen (see figure 9).

When comparing the exploration agent and non-
modulating agent in environments that they were not evolved
for, in this case evaluated for a variable or extended lengthof
time, then it is shown that modulation makes the agent more
robust. This robustness carries with it a performance cost as
the exploration agent can not execute the actions that only
reduce the overall input signal the most.
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Modulation for the exploration agent, stops the system
from settling into a stable state where activity declines toa
point whereby the network stops alternating between actions.
This agitation is achieved by increasing the global network
activity of the system. This stops it reducing the strength
of its inputs and settling into a stable state, even though the
environment may allow for it or make this the optimal be-
haviour.

Discussion

It has been hypothesised in this paper that there exist two
classes of emotions; driving and satisfying emotions. The
model of emotion used here is presented as a mechanistic
process within the context of a dynamical system The brain,

performing action selection by self-organising and minimis-
ing its internal activity, is either hampered or aided in this by
neuromodulators that agitate or calm it. This has the effect
of either influencing an agent to perform actions it would not
otherwise do, or continuing its current behaviour. Because
this is a significant influence upon the behaviour of the agent,
we observe these effects as driving and satisfying emotions.

Applying the hypothesis to natural agents

The plausibility of this hypothesis has been tested in this
paper using feed forward networks of spiking integrate-and-
fire neurons. The model is a simplistic one that adapts to
immediate stimuli. There is no capacity for long term mem-
ory storage, adaptation to sequences of inputs or ability to
associate stimuli.

But for a stimulus-response agent, the results are consis-
tent with the hypothesis. This in itself is insufficient for us
to draw conclusions about the nature of emotions in animals
and humans. For that, we will need real-life observations.
There is evidence though to suggest that the hypothesis may
apply to natural brains. Panksepp provides some evidence
for this when discussing the localisation of activity in the
brain related to emotional states, (Panksepp, 1998, page 95-
96). Activity is decreased in the brain when happy feel-
ings are experienced, conversely activity is increased when
sad feelings are experienced. People who have a predilec-
tion towards panic attacks exhibit over-activity in their right
parahippocampal regions.

If the hypothesis is correct then it will most likely not
be as simple as positive emotional states being signified by
low neural activity and negative emotional states signifiedby
high activity. Panksepp provides the example of people suf-
fering depression exhibiting less arousal of their left frontal
areas than is considered normal.

(Gotlib & Hamilton, 2008) provide a review of the litera-
ture concerning the neural activity of people suffering from
depression. They also discuss the increased activation of
the amygdala in those prone to depression. Major depres-
sive disorder is a complex phenomenon which is essentially
a psychiatric disorder of the regulation of emotion. A lack
of motivation and the inability to regulate the processing of
negative experiences are strong characteristics of depression.
Their review discusses the idea of depression being caused
by an imbalance in the activity between the limbic system
and the dorsal cortical structures. Also noted is the apparent
normalisation of activity between the amygdala, anterior cin-
gulate cortex and the dorsolateral prefrontal cortex following
successful treatment. Minsky raises the issue of competing
interests within an artificial agent giving rise to what can be
observed as emotional reactions (Minsky, 1988). Maybe a
related point is that emotional disorders can arise from the
skewed salience of competing interests, as reflected by rela-
tive levels of neural activity in the corresponding areas ofthe
brain.

A potential architecture for artificial agents

(Kelley, 2005) argues that in their broadest possible sense,
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emotions are required for any organism or species to survive.
They allow animals to satisfy needs and act more effectively
within their environment. If robots are to survive as effec-
tively then they also need equivalent systems.

Implementing these systems and seeing first hand how
they benefit artificial agents should help us appreciate the
reasons why natural agents are endowed with emotions. It is
envisaged that the following architecture should prove useful
for the design of artificial agents. The premise behind this is
the question; how can we design agents to adapt to unknown
environments when we ourselves do not know what those
environments will be? The approach taken here is to concern
ourselves with the features and resources that are consistent
between the different environments that the agent may in-
habit. The state of these features shall then be signalled to
a self-organising agent controller so that it can adapt accord-
ingly.

Separate subsystems can be hard-coded to look out for
certain sensory features and to provide a signal to the neural
network controller using modulators. So for example, sepa-
rate subsystems may be required to recognise the difference
between a clean carpet and a dirty one, or the edge of some
stairs. A subsystem that recognises a dirty carpet could send
out a signal to agitate the neural network controller until the
agent started to clean the carpet. Another subsystem could
decrease network activity using a neuromodulator when the
agent started to recharge batteries that were low. If an agent
with such a controller as presented in this paper needs to re-
plenish a critical resource or keep its physiological variables
within a critical range, then it will do so by choosing actions
that result in lower network activity.

For an agent to maintain homoeostasis using a self-
organising system, there must be a non-linear increase in the
activity of the network controller in order to signal that equi-
librium of its physiological variables needs to be restored.
The relative importance of repleting a resource grows as it is
depleted. Taking the example of a battery level for a robotic
agent, a change from 2% to 1% is absolutely critical, far more
say than a change from from 15% to 14%. The increase in
network activity needs to be amplified, it needs a gain con-
trol.

The signal need not carry much information, but it must be
acted upon when the level of a resource becomes critical. It
must increase the activity of the parts of the system that allow
homoeostasis to be re-asserted. Once this has been achieved,
the signal is no longer required and the system can settle back
into a stable state. The more significant the increase in net-
work activity, the more the self-organising system is driven
to minimise it. As with Panksepp’s example of food tasting
better the more hungry we are, neuromodulators could work
together to repulse and attract the agent towards specific ac-
tions or environments. If there is a significant increase in
activity because the agent has a particular resource that is
critically low, then a neuromodulator that decreases activity
in the affected parts of the brain will have a much stronger
effect.

The example of homoeostasis was used because the need
to maintain equilibrium of physiological processes is con-

stant, regardless of the environment that an agent may in-
habit. This mechanism need not be constrained to maintain-
ing homoeostasis though. Significant changes in network ac-
tivity could be triggered because of specific external, rather
than internal, sensory stimuli. An increase in network activ-
ity was used in this paper to drive an agent to re-explore the
effect of actions that had previously shown to be less than
optimal. But it could probably also be used to implement the
role of disgust by making certain external stimuli aversive,
driving the agent away from it.

Satisfying emotions could help encourage an agent to per-
form otherwise neutral actions. There are situations whereby
an agent may need to perform an action that will indirectly
minimise network activity because it leads to a more promis-
ing environment. So for example, an agent may have learnt
from previous experience that being in a particular environ-
ment increases the chances of a specific resource being re-
pleted. Learning to recognise such an environment and in-
ducing satisfying emotions that minimised activity in the net-
work would attract the agent towards it.

An agent may also need to perform an action that does
not help in maintaining homoeostasis at all. In the case of
an artificial agent developed for a specific purpose, we may
wish to bias it to perform actions or behaviours which are
of no benefit to the robot but for example, provides us with
cleaner carpets.
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