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Abstract. Taking neuromodulation as a mechanism underlying emo-
tions, this paper investigates how such a mechanism can bias an artificial
neural network towards exploration of new courses of action, as seems to
be the case in positive emotions, or exploitation of known possibilities,
as in negative emotions such as predatory fear. We use neural networks
of spiking leaky integrate-and-fire neurons acting as minimal disturbance
systems, and test them with continuous actions. The networks have to
balance the activations of all their output neurons concurrently. We have
found that having the middle layer modulate the output layer helps bal-
ance the activations of the output neurons. A second discovery is that
when the network is modulated in this way, it performs better at tasks
requiring the exploitation of actions that are found to be rewarding.
This is complementary to previous findings where having the input layer
modulate the middle layer biases the network towards exploration of al-
ternative actions. We conclude that a network can be biased towards
either exploration of exploitation depending on which layers are being
modulated.

1 Introduction

In the brain, different levels of neuro-active substances modulate the sensitivity-
to-input of neurons that have receptors for them [1, page 94]. Fellous [2] proposes
that emotion can be seen as continuous patterns of neuromodulation of certain
brain structures. Kelley [3] argues that in their broadest possible sense, emo-
tions are required for any organism or species to survive. They allow animals
to satisfy needs and act more effectively within their environment. She argues
that emotions are derived from neurochemically coded systems. These systems
have been present in one form or another throughout our evolutionary history.
Emotions can be influenced by altering the levels of these neuromodulators in
the nervous system.

Emotions also help the reasoning process [4]. Evans puts this idea in a game-
theoretical framework in his search hypothesis [5], according to which, in a ra-
tional agent confronted to an open-ended and partially unknown environment,
emotions constrain the range of outcomes to be considered and subjectively ap-
plies a utility to each. The search hypothesis can be seen as an example of an
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agent moving from exploration of possible outcomes to an exploitation of the ac-
tion providing the current expected highest expected utility. However, the best
course of action does not need to be learnt through experience. Nesse [6] defines
emotions as specialised states of operation that give an evolutionary advantage
to an agent in particular situations. LeDoux [7] describes a distinguishing char-
acteristic of cognitive processing as flexibility of response to the environment.
Emotions provide a counter-balance to this by narrowing the response of an
agent in ways that have a greater evolutionary fitness. As an example, predator
avoidance driven by fear is an ideal behaviour to be selected for and optimised
by evolution. It is a behaviour that needs to be maintained until the prey reaches
assured safety regardless of whether it is able to continually sense the predator or
not [8]. Nor will the prey benefit from being distracted by less important sensory
input while it is still in danger. Successful fleeing behaviour might not require
exploration of different actions when instead, exploitation of known strategies
for a successful escape should be given priority. On the contrary, positive emo-
tional states are thought to promote openness to the world and exploration of
new courses of actions [9].

2 The Agent

We have used the simplest possible agent to test the effect of neuromodulation
when applied to an artificial neural network, an agent that cannot directly sense
its external environment. It can only sense two critical resources of its simulated
body which it must maximise. These resources are referred to here as ’energy’ and
’water’. The agent can execute a set of actions that either increase or decrease by
a given amount the energy or water level in the body, plus two neutral actions.
Neutral actions are useful because if they are used differently to each other then
it throws doubt on how well the agent is adapting. The ’inactive’ action is used by
default when an agent does not choose for itself. This can happen if no activation
reaches the output neurons of its neural network. It results in each resource of
the agent being reduced by the maximum cost. The effect of this is more costly
to the agent than if it deliberately chose the most costly action available to it as
that would only result in a reduction of one resource.

2.1 The Neural Network

The agent adapts using a feed forward neural network of spiking leaky integrate-
and-fire neurons based on the model described in [10] and [1, page 339]. The
network learns which outputs should be most frequently and strongly fired to
minimise the subsequent level of input signal in the next turn. Each neural
network is made up of three distinct layers; input, middle and output layer. The
network is iterated over a fixed number of times within a single turn.

For each resource, the input layer has two neurons that output to the middle
layer. One neuron signals the need for the resource and the other neuron signals
the satisfaction of that need. There are situations in which an effective behaviour
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for an agent may be to decrease a need but not satisfy it. Alternatively there
may be situations in which an agent needs to store more resources than it is
used to doing. In these experiments the agent is tasked only with maximising its
resources.

There is one output neuron per action. The action performed by the agent
directly and immediately alters the level of a resource. This consequently de-
termines the strength of the corresponding input signal fed to the network in
the next turn. This is fed via the input neurons corresponding to the resource
effected by the action. In this way the network acts as a minimal disturbance
system [11] as it settles upon actions that reduce its total input activation.

2.2 The Neuron

Spiking neurons were used in the neural network, each one acting as a capacitor
to integrate and contain the charge delivered by synaptic input. This charge
slowly leaks away over time. The neurons have a fixed voltage threshold and
base leakage which are genetically determined.

The neurons also have an adaptive leakage to account for how frequently
they have recently spiked. If a neuron spikes then its leakage is increased by a
genetically determined amount. If the neuron does not spike then the leakage
is decreased by that same amount. Leakage is constrained within the range
[0, 1]. The spiking threshold is the same for all neurons in the network and
is constant. The neurons are stochastic so that once the spiking threshold has
been reached, there is a random chance that a spike will be transmitted along
the output weights; either way the cell loses its activation. The neurons send
out a stereotypical spike. This is implemented as a binary output. The weights
connecting the neurons are constrained within the range [0, 1]. The learning rule
employed uses spike timing-dependent plasticity (STDP). The rule used here
is implemented using a two-coincidence-detector model [12] Each neuron has
its own post-synaptic recording function that is incremented when the neuron
spikes and which decays over time in-between spikes. This is compared to the pre-
synaptic recording function of the neuron that has transmitted the activation.
Each layer of neurons has its own increment and decay rates determined prior
to testing via automated parameter optimisation.

2.3 Modulators

Several variants of the network were created; either modulating or non-
modulating. Used here, a modulator is a global signal that can influence the
behaviour of a neuron if that neuron has receptors for it. The signal decays over
time, specified by the re-uptake rate, and can be increased by firing neurons that
have secretors for it.

Neurons that are to be modulated are given a random number of receptors.
These can be modulated by neurons in other layers that have secretors for those
modulators. The receptors modulate either the neuron’s sensitivity to input or
probability of firing. The effect of this modulation is determined by the level of
the associated modulator and whether the receptor is inhibitory or excitatory.



892 K. Parussel and L. Cañamero

Neurons can also have secretors. These increase the level of an associated
modulator. The modulator re-uptake rate, the modulation rate of the receptors
and the increment rate of the secretors is determined by artificial evolution along
with many other parameters of the neural network before the model is tested.

2.4 Parameter Optimisation

The parameters of the networks were initially optimised using artificial evolu-
tion so as to make a fair comparison. Once these constrained evolutionary runs
were finished the parameters were hard-coded and tested as a population of 450
agents in order to determine the average performance of the neural network.
An average fitness is required because the mapping from genotype to phenotype
is stochastic. This is due to the randomisation of weights and the connectivity
between neurons. The fitness function used during parameter optimisation was
Energy + Water + Age − absolute(Energy − Water).

The absolute difference between the energy and water resource was subtracted
from the fitness as both resources were essential for the agent to stay alive. The
age was only used for the fitness function during the evolutionary runs and not
used afterwards when comparing the average performance of agents with the
optimised architectures. This is because agents would generally only die at the
beginning of an evolutionary run before the architecture had been optimised.

3 Discrete and Continuous Actions

Modulating and non-modulating versions of the network were implemented and
compared in [13]. In all the networks a winner-takes-all selection scheme was
used. A single action was chosen each turn by determining the output neuron
that had the strongest average activation over multiple iterations of the network.
The difference in activation strength between the winning output neuron and the
losing neurons was of no consequence. Nor did it matter how strongly the losing
output neurons were activated.

If the network is to be used to drive the motors of a robot, or to provide
input signals to other neural networks, then it needs to be able to balance the
activations of all of its output neurons concurrently.

The previous experiments have used actions that each have one single dis-
crete effect. In the experiments described here, the networks are provided with
continuous actions whose effect depend upon the level of activation of the cor-
responding output neuron. The stronger the activation the greater the effect
provided by the continuous action.

In a robot, discrete actions would be the equivalent of motors that either ran
at full speed or were switched off. Continuous actions would be the equivalent
of motors that ran at a speed determined by the level of the activation they
received. The networks have to learn to provide the correct activation to all of
the output neurons concurrently rather than only be concerned about which
neuron is more strongly activated than all the others.
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3.1 Exploratory Two-Modulator Network Optimised for Use with
Discrete Actions

The modulating network analysed in [14] and [13] had two modulators, one to
signal hunger and another to signal thirst. The neurons in the input layer each
had a secretor for the modulator that corresponded to the resource the input
neuron pertained to. The neurons in the middle layer had a random number of
excitatory or inhibitory receptors for these modulators, see Fig.1a).
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Fig. 1. The agent consists of a body that contains water and energy levels. A) Two-
modulator agent: Hunger (and thirst) neurons increase the strength of the hunger (or
thirst) modulator when they fire. Neurons in the middle layer have a random number
of inhibitory receptors for these modulators. B) Single-modulator agent: Neurons in
the middle layer increase the strength of a single modulator when they fire. Neurons
in the output layer have a random number of excitatory receptors for this modulator.

Having the input layer modulate the middle layer was shown to increase ex-
ploration. As a consequence of this the performance of the modulating agent
was slightly below that of the non-modulating network. Actions that were costly
or neutral were less likely to be ignored throughout the evaluation period. But
conversely, the modulating network was more able to adapt when the effect of
actions changed.

3.2 Networks Optimised for Use with Continuous Actions

Many different variants of the network were implemented and tested. The aim
was to find the best way of modulating a minimal disturbance network for use
with continuous actions. Permutations included having the input layer modulate
the output layer, using between one and four modulators and having layers
modulate themselves. The parameter sets were optimised for use with continuous
actions using artificial evolution. If the architecture performed particularly well
then the parameters were hard-coded and tested more thoroughly.
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Fig. 2. Fitness, energy and water levels of the different architectures. In order of perfor-
mance: single modulator (middle to output layer), non-modulating and two modulators
(input to middle layer).

The best performing design used a single modulator secreted by the middle
layer to modulate neurons in the output layer, see Fig.1b). The non-modulating
and two-modulator architectures, originally optimised for use with discrete ac-
tions, were re-optimised for use with continuous actions. The parameters of
all three architectures were hard-coded and tested using a population of 450
agents. The average fitness, energy and water levels for each architecture can
be seen in Fig.2. The explorative behaviour of the two-modulator architecture
carries a cost in performance when used in relatively stable environments as
the agent tries other actions that have not necessarily proven successful in the
past.

4 Adaptive Performance of the Networks

The synaptic weights between the input and the middle layer of the network can
be thought of as providing ’activity diffraction’ to allow the input signals to filter
through the system at different speeds. The synaptic weights between the middle
layer and the output layer can be thought of as providing ’activity integration’,
integrating those signals back into combinations that allow particular output
neurons to fire more frequently than others.

Because activity filters through the network at different speeds, some output
neurons will fire earlier than others. If an action is rewarding and subsequently
reduces the input signal to the network, synaptic activity will be reduced for
the other neurons and therefore will be less likely to fire. If an action is not
rewarding, the input signal is not reduced, other neurons will eventually fire and
other actions will be tried instead.
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4.1 Input to Middle Layer Modulation

The hunger and thirst modulators of the two-modulator agent optimised for use
with discrete actions inhibit the neurons in the middle layer. The strongest fir-
ing neurons have more activation to lose when being inhibited. These are also
the neurons more likely to be firing the output neurons that lead to actions
that reduce total input activity into the network. So by inhibiting the neurons
in the middle layer the ’diffraction’ of activation throughout the network is re-
duced and other actions have a greater chance of being performed. This increases
exploratory behaviour.

4.2 Middle to Output Layer Modulation

The most successful network optimised for use with continuous actions has the
middle layer modulating the output layer. The receptors of the output layer for
the single-modulator network have all evolved to be excitatory. This suggests
that modulation is used to excite output neurons that lead to rewarding actions.
In other words, modulation is used to balance the outputs of the neural network.

Evidence for this comes from using the single-modulator network with dis-
crete actions even though it has been optimised for use with continuous actions.
It performs better than a non-modulating network optimised for use with dis-
crete actions. Not only does the single-modulating network achieve greater av-
erage energy and water resource levels (energy=853, water=853) than the non-
modulating network (energy=790, water=757), it also manages to avoid having
more of one resource than the other.

With the non-modulating network, the more rewarding an action, the stronger
the activation of the corresponding output neuron. In contrast, the single-
modulating network only fires the outputs leading to rewarding actions and
ignores the neutral ones even when there is no need to do so, (see Table 1).

Table 1. The average frequency of discrete actions chosen by a population of 450
agents. Two architectures are compared, the non-modulating architecture optimised
for use with discrete actions, and the single-modulator architecture optimised for use
with continuous actions.

Action Amt Resource Non-mod freq. Single-mod freq.
Inactive -2&-2 E&W 0.0131111% 0.0948889%
Cost -2 E 1.32978% 0.944%
Cost -1 E 1.30733% 0.960889%
Neutral 0 E 2.42911% 0.994889%
Reward +1 E 7.15533% 5.92333%
Reward +2 E 37.9384% 41.2469%
Cost -2 W 1.53378% 0.922667%
Cost -1 W 1.652% 0.956222%
Neutral 0 W 2.60533% 1.00356%
Reward +1 W 7.57089% 5.59422%
Reward +2 W 36.4649% 41.3584%
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This suggests that the single-modulating network provides reduced activations
for all of its output neurons by default and uses modulation to excite the output
neurons which are rewarding.

5 Exploitation vs. Exploration

Having the middle layer modulate the output layer helps the agent exploit the
actions that are found to be the most rewarding whilst ignoring those actions
that are neutral or costly. To further demonstrate this, the networks were tested
using discrete cost / reward actions modified to work on the principle of ’use-
it-or-lose-it’. This gives exploitative agents an advantage. The actions work as
follows:

– If an action is performed for the first time then it provides its maximum
effect.

– If the agent continues to perform that action then the it will continue to
provide its maximum effect.

– If another action is performed then the potential effect of the original action
will decrease each turn until it reaches a minimum regardless of whether
the agent uses it or not. The minimum potential effect is anything less than
1 resource point. After the action reaches this minimum it will return to
providing its maximum effect when used.

If an agent explores other actions and returns to the original action found to be
the most rewarding so far, the effect of that action will be reduced for each turn
that the agent performed other actions. If the agent continues to use that action
thereafter, the effect will continue to be reduced each turn until it reaches a min-
imum. At this point the action returns to providing its maximum effect again.

Each network was tested using a population of 450 agents. They were tested
102 times; for each evaluation the ratio of the action’s previous effect being
retained was incremented by 0.01. For example, at a ratio of 0.5 the potential
effect that an action can provide is halved each round once the agent stops
exploiting it continuously. The actions are discrete so the agents can only pick
one action per turn. This is the action whose corresponding output neuron has
the strongest average activation.

The performance of the three architectures can be compared in Fig.3. It can
be seen that the performance of each architecture declines as the ratio reaches
0.99. This is because once the agent stops using an action, it takes longer for the
potential effect of using that action to reduce to the minimum before returning
to its maximum level again. When the ratio reaches 1 the performance of all
three architectures reverts to the same level as at 0. It is not plotted here for
the sake of clarity.

The single-modulator architecture is the best performer with each agent in
the population increasing their energy and water levels by the highest average
amount each time. At a ratio of 0.99, the single-modulator architecture performs
as well as the non-modulating architecture but the performance increases as
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Fig. 3. Testing the networks using discrete use-it-or-lose-it actions show how well they
cope with tasks benefitting from exploitative behaviour. The single-modulator network
performs significantly better. The two-modulator network, previously shown to perform
better at tasks benefitting from explorative behaviour, performs worst of all.

the ratio decreases. The two-modulator architecture performs worst of all. Its
performance at a ratio of 0.99 is significantly below that of the other two.

6 Conclusion

Taking modulation as a mechanism underlying emotions, we have investigated
how such a mechanism can bias an artificial neural network towards exploration
of new courses of action, as seems to be the case in positive emotions, or ex-
ploitation of known possibilities, as in negative emotions such as predatory fear.
Modulation can be used to both concurrently provide the correct activation to
each neuron in the output layer, and to bias a network towards either exploration
or exploitation.

If an emotion is merely a particular subset of neural functions found by evolu-
tion to provide the optimal behaviour for an agent given a certain environmental
or bodily state, then those neural substrates need to be activated concurrently.
Each neural function may also require a different degree of activation. This means
that we may need a single neural network to find the optimal balance of acti-
vation for each of its output neurons so that it can later be used to drive other
neural networks.

Further work is required to determine whether exploration and exploitation
networks should be driven by a third, arbitrating neural network, and whether
the correct network can be selected using neuromodulators. It may also be the
case that a single neural network can be biased towards either exploitation or
exploration at runtime, as in [9], by modulating the re-uptake rate.
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